
116 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0 0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E

manager

Software Management
Renaissance
Walker Royce

E d i t o r : D o n a l d J . R e i f e r ■ R e i f e r C o n s u l t a n t s ■ d . r e i f e r @ i e e e . o r g

T
he waterfall model of conventional
software management, which is still
prevalent in many mature software or-
ganizations, has served its purpose.
The ever-increasing market demands
on software development performance

continue. The increasing breadth of Internet
applications has further accelerated the
transition to a more modern management

process known as spiral, incre-
mental, evolutionary, or iterative
development. A comparison of
conventional and modern soft-
ware development models illus-
trates some of the critical discrim-
inators in this transition.

Top 10 Principles of
Conventional Software
Management

Most software engineering
texts present the waterfall model as the
source of the conventional software man-
agement process. Conventional software
management techniques work well for cus-
tom-developed software where the require-
ments are fixed when development begins.
The life cycle typically follows a sequential
transition from requirements to design to
code to testing, with ad hoc documentation
that attempts to capture complete interme-
diate representations at every stage. After
coding and unit testing individual compo-
nents, the components are compiled and
linked together (integrated) into a complete
system.

In my view, the top 10 principles of con-
ventional software management are:

1. Freeze requirements before design.
2. Forbid coding before detailed design

review.
3. Use a higher-order programming language.
4. Complete unit testing before integration.
5. Maintain detailed traceability among all

artifacts.
6. Thoroughly document each stage of the

design.
7. Assess quality with an independent

team.
8. Inspect everything.
9. Plan everything early with high fidelity.

10. Rigorously control source-code baselines.

Significant inconsistencies among compo-
nent interfaces and behavior, which can be ex-
tremely difficult to resolve, cannot be identi-
fied until integration, which almost always
takes much longer than planned. Budget and
schedule pressures drive teams to shoehorn in
the quickest fixes. Redesign usually is out of
the question. Testing of system threads, oper-
ational usefulness, and requirements compli-
ance is performed through a series of releases
until the software is judged adequate for the
user. About 90% of the time, the process re-
sults in a late, over-budget, fragile, and expen-
sive-to-maintain software system.

A typical result of following the waterfall
model is that integration and testing con-
sume too much time and effort in major soft-
ware development workflows. For successful
projects, about 40% of resources go to inte-
gration and testing. The percentage is even
higher for unsuccessful projects. With such a
low success rate, better risk management is
imperative.

J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 117

MANAGERMANAGER

Top 10 Principles of
Modern Software
Management

While the software industry
has been evolving the manage-
ment process for many years,
the Internet has accelerated
the transition from the water-
fall model to iterative develop-
ment. First, the Internet offers
a powerful set of mechanisms
for multisite collaboration
and electronic information ex-
change that support iterative
processes. Second, distributed
infrastructures for common
architectural patterns support
executable architectures of
Internet-based applications.
Web-based applications consist of
many moving parts that are con-
stantly updated, making iterative de-
velopment the process of choice. Fi-
nally, by introducing a new set of
business models, projects, and orga-
nizations, the Internet has created a
demand for incredibly rapid develop-
ment of quality applications. Itera-
tive development processes are neces-
sary to meet challenging project per-
formance goals.

Modern software development
produces the architecture first, fol-
lowed by usable increments of partial
capability, and then completeness.
Requirements and design flaws are
detected and resolved earlier in the
life cycle, avoiding the big-bang inte-
gration at the end of a project. Qual-
ity control improves because system
characteristics inherent in the archi-
tecture (such as performance, fault
tolerance, interoperability, and main-
tainability) are identifiable earlier in
the process where problems can be
corrected without jeopardizing target
costs and schedules.

My top 10 principles of modern soft-
ware management are:

1. Base the process on an architec-
ture-first approach.

2. Establish an iterative life-cycle
process that confronts risk early.

3. Transition design methods to
emphasize component-based
development.

4. Establish a change-management
environment.

5. Enhance change freedom through
tools that support round-trip en-
gineering.

6. Capture design artifacts in rigor-
ous, model-based notation.

7. Instrument the process for objec-
tive quality control and progress
assessment.

8. Use a demonstration-based ap-
proach to assess intermediate
artifacts.

9. Plan intermediate releases in
groups of usage scenarios with
evolving levels of detail.

10. Establish an economically-
scalable, configurable process.

Where conventional approaches
mire software development in inte-
gration activities, these modern prin-
ciples should result in less scrap and
rework through a greater emphasis
on early life-cycle engineering and a
more balanced expenditure of re-
sources across the core workflows of
a modern process.

Demonstrations, enabled by the
architecture-first approach, force
integration into the design phase.
They do not eliminate design break-
age, but they make it happen when
it can be addressed effectively. By
avoiding the downstream integra-
tion nightmare (along with late
patches and suboptimal software
fixes, a more robust and maintain-

able design results. Interim
milestones provide tangible
results. The project does not
move forward until it meets
the demonstration objectives.
This process does not pre-
clude the renegotiation of ob-
jectives once the interim find-
ings permit further under-
standing of the trade-offs
inherent in the requirements,
design, and plans.

The Rational Unified Process,
a well-accepted benchmark of a
modern iterative development
process, embodies my top 10
principles. Its life cycle has four
phases:

1. Inception: definition and assess-
ment of the vision and business
case;

2. Elaboration: synthesis, demon-
stration, and assessment of an
architecture baseline;

3. Construction: development, dem-
onstration, and assessment of
useful increments; and

4. Transition: usability assessment,
productization, and deployment.

Each phase of development produces
a certain amount of precision in the
product or system description called
software artifacts. Life-cycle soft-
ware artifacts are organized into five
sets that are roughly partitioned by
the underlying language of:

■ requirements (organized text and
UML models of the problem
space);

■ design (UML models of the solu-
tion space);

■ implementation (human-readable
programming language and asso-
ciated source files);

■ deployment (machine-processable
languages and associated files);
and

■ management (ad hoc textual for-
mats such as plans, schedules, and
spreadsheets).

At any point in the life cycle, the dif-
ferent artifact sets should be in bal-
ance, at compatible detail levels, and

118 I E E E S O F T W A R E J u l y / A u g u s t 2 0 0 0

MANAGERMANAGER

traceable to each other. As develop-
ment proceeds, each part evolves in
more detail. When the system is com-
plete, all five sets are fully elaborated
and consistent with each other. Un-
like the conventional practice, the
modern process does not specify the
requirements, then develop the de-
sign, then write code, then execute.
Instead, the entire system evolves
throughout the process.

Principles that Didn’t Make
the Cut

A comparison of my top 10 princi-
ples with other lists, such as the Soft-
ware Project Management Network’s
Best Practice Initiative or the SEI Capa-
bility Maturity Model’s key process ar-
eas, reveals several notable omissions.

■ Requirements-first emphasis. The
most obvious difference is my ap-
parent underemphasis on require-
ments. Requirements are a means,
not an end. Conventional wisdom
has overprescribed “better re-
quirements” as the cure for recur-
ring project woes. Requirements,
designs, and plans should evolve
together.

■ Detailed planning and “inch-
stones.” Overplanning, another
misapplied practice, is different
from evolutionary planning. Early,
false precision is a recurring source
of downstream scrap and rework.

■ Inspections. Inspections are over-
hyped and overused. While prop-
erly focused inspections help to re-
solve known issues, inspections
too often are used to identify is-

sues and provide quality coverage.
Human inspections are inefficient,
labor-intensive, and expensive. In
my experience, inspections can
uncover many cosmetic errors, but
they rarely uncover architec-
turally-significant defects.

■ Separate testing. Testing is not cov-
ered by a separate principle; it is
covered by all of them. A modern
process integrates testing activities
throughout the life cycle with ho-
mogeneous methods, tools, and
notations. The integration of inter-
faces, behaviors, and structures
should be emphasized before con-
centrating on completeness testing
and requirements compliance.

■ Separate quality assurance. The
much-touted concept of a separate
quality-assurance reporting chain
has resulted in projects that isolate
“quality police.” A better ap-
proach is to work quality assess-
ment into every activity through
the checks and balances of organi-
zational teams focused on archi-
tecture, components, and usabil-
ity. Quality is everyone’s job, not
one team’s job.

■ Requirements traceability to de-

sign. Demanding rigorous prob-
lem-to-solution traceability is fre-
quently counterproductive, forc-
ing the design to be structured in
the same manner as the require-
ments. Good component-based ar-
chitectures have chaotic traceabil-
ity to their requirements. Tight
problem-to-solution traceability
might have been productive when
100% custom software was the
norm—those days are gone.

Predicting the Future
Planning and expenditure alloca-

tions will continue to shift as modern
project management methods, archi-
tectural infrastructures (such as Java
2 Enterprise Edition and Microsoft
Windows DNA), and software devel-
opment processes and technology
mature. Resource expenditure trends
will lead to more balance across the
primary workflows as a result of in-
creased exploitation of standard ar-
chitectural patterns and infrastruc-
ture components (less human-gener-
ated stuff), more efficient processes
(less scrap and rework), more profi-
cient people (in smaller teams), and
more automation. The resource allo-
cations in Table 1 reflect my experi-
ence in waterfall process projects and
several successful iterative process
projects. These values are deliber-
ately imprecise; their purpose is to re-
late the relative trends over time.
Table 1’s “Future” column provides
my view on major trends that will
surface in coming years.

Several major trends will surface
in the coming years:

■ More automation of implementa-
tion activities and reuse of com-
mercial components will reduce
implementation activities, result-
ing in a relatively greater burden
on requirements and design activ-
ities and environments.

■ More mature iterative develop-
ment methods and Web-based ar-
chitectures will drive deployment
activities into a larger role within
the life cycle.

Table 1

Expenditure Allocations
Life-cycle activity Conventional Modern Future
Management 5% 10% 12%
Requirements 5% 10% 12%
Design 10% 15% 20%
Implementation 30% 25% 14%
Test and assessment 40% 25% 18%
Deployment 5% 5% 12%
Environment 5% 10% 12%
Totals 100% 100% 100%

Conventional wisdom has
overprescribed “better
requirements” as the
cure for recurring

project woes.

Continued on p. 121

0 7 4 0 - 7 4 5 9 / 0 0 / $ 1 0 . 0 0 © 2 0 0 0 I E E E J u l y / A u g u s t 2 0 0 0 I E E E S O F T W A R E 121

CULTURE AT WORK

open to the team’s ideas, that you
value diversity and seek synergy.
Mike didn’t buy it. I asked him,
“What are your concerns or cau-
tions?” I could tell he was surprised
at this bold question: “I sense that
you are a very strong person, I am
too.” I wanted to say, “You bet I’m a
strong person—you’re not getting my
Social Security and pension fund
without a fight.” He expressed sur-
prise that I didn’t want to know more
about their systems. My answer was
that I hoped they were not interested
in whether I could program in C, be-
cause next month it might be Java
and that I was a very quick study.

I couldn’t believe that I was still
there. Hotstuff’s claim to fame was
that they save other companies time.
I heard it twice from two different
people. They do have a mission state-
ment—and I already heard their vi-
sion, world domination. They were
not selling ad space or the fact that
they could get so many hits every
hour. It is that they have a system
that lets any company find the best
candidates and hire them in the least
amount of time. Instant delivery.

I felt like I was meeting with my
future father-in-law to ask if I could

marry his daughter. After all, this
company was his baby, and I could
see how painful it was for him to let
go and let someone else share in the
day-to-day operations.

Mike suggested that I talk to the
software manager, Tim. We found
Tim at the elevator. I was amazed
that in all the apparent confusion,
the handoffs went smoothly—no
waiting around, no “Who wants the
candidate?”

As Tim and I greeted each other,
two of Tim’s coworkers congratu-
lated him. As we headed back to
that familiar friend, the comfy sofa,
I asked Tim why. “I just got a pro-
motion,” he explained. They had
just appointed him as software man-
ager. I could tell he was not com-
fortable interviewing me. He asked
if I had experience hiring, but he
was more interested if I had ever
fired anyone. As it turns out, I have
often inherited the nonworkers that
nobody wanted but did not have the
courage, fortitude, or persistence to
get them to improve or dismiss
them. I know how to hire good per-
formers, and I know how and am
willing to fire people. I sensed a sigh
of relief from Tim.

I asked, “When was the last time
management surprised you?” Tim
told me it was when they made him a
manager. “Did you ask for it?” I
asked. “No,” he said, “I told them I
did not want it.”

Just as we finished, Bruce showed
up. I had been here three hours—
time flies when you are having fun,
and I was having the time of my life.

I asked Bruce, “What are your con-
cerns?” He told me, “The ideal candi-
date should have an all software back-
ground.” What did this mean? Could
I claim some sort of discrimination be-
cause I worked with hardware? That
guy wasn’t kidding about world dom-
ination. Bruce told me he would let
me know the following week.

When I got home, I found I was
still holding the application. The
next day, I sent it to Bruce with a nice
thank-you letter.

It’s been several weeks now. He
said he would call me.

Al Bennett is a software engineering manager in the New
York area. He is a member of the IEEE Computer Society and a
Software Engineering Institute-authorized CMM lead assessor. He
frequently speaks on software process improvement at SEI con-
ferences, software technology conferences, and local SPIN
groups. Contact him at 35 Aquarius St., Monroe, NY 10950;
abennett@computer.org.

MANAGER

■ More mature iterative development
environments (process and tooling)
will enable further reduction of
life-cycle scrap and rework.

■ Because iterative development is
more challenging than the simple
management paradigm presented
by the waterfall model, disciplined
software management and com-
mon sense will remain two of the
paramount discriminators of soft-
ware engineering success or failure.

I n many software domains, a dis-
tinct line divides development and
maintenance. Future software pro-

jects (legacy system upgrades, new
developments, or some combination

of the two) probably will not differ-
entiate much between development
and maintenance. Iterative develop-
ment and the Internet are driving
software engineering toward a more
homogeneous software-management
framework. With most of the soft-
ware industry focusing on iterative-
process frameworks, advanced re-
quirements and design notations, and
Web-based architectural patterns, we
should see dramatic improvements in
software project performance and
higher returns on organizational soft-
ware technology investments.

Ten years ago, about one in 10
software projects succeeded. Conse-
quently, software project managers
spent too much time playing defense
and worrying about risk manage-

ment. Today, that ratio has improved
to about one in four, still as challeng-
ing as batting against a major league
pitcher. As modern iterative develop-
ment and supporting environments
advance, the success ratio for deliv-
ering a software project 10 years from
now could improve to one in two.
Software project managers should in-
vest more time playing offense
through success management, and or-
ganizations should continue to acceler-
ate software leverage to deliver more
value and new features faster and
more profitably.

Walker Royce is the vice president and general man-
ager of strategic services for Rational Software Corporation. He
is the author of Software Project Management, A Unified Frame-
work (Addison-Wesley, 1998). Contact him at wroyce@rational.
com.

Continued from p. 118

